How to find the range of asinx+bcosx+c

How to find the range of asinx+bcosx+c

Since sinx

and cosx is defined for all real values  of x  , so the domain of the given  function is  the set of all real numbers. We have to find the range of  asinx+bcosx+c  . For the time being, assume that the quantity \sqrt{a^{2}+b^{2}} is not zero ( if it was zero, it would then mean that both a and b are zero, resulting in f(x)=asinx+bcosx+c being a constant function of value c . In that case, the range would have been just c.

Range of asinx+bcosx

Maximum and minimum value of y=asinx+bcosx

To find the max. and min. value of  asinx+bcosx , we will use the identity sin(\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta   we have  \large asinx+bcosx . So we would  like to find an angle \beta such that  cos\beta =a and sin\beta =b, for then we could write    asinx+bcosx=cos\beta sinx+sin\beta cosx=sin(x+\beta )

Since sin\beta and cos\beta must be between 1 and 1, and a and b may not be in that range. Moreover, we know that cos^{2 }\beta +sin^{2}\beta must equal 1, so we  scale everything by \sqrt{a^{2}+b^{2}}.

Let A=\frac{a}{\sqrt{a^{2}+b^{2}}}  and B=\frac{b}{\sqrt{a^{2}+b^{2}}}. Clearly  A^{2}+B^{2}=1, so there is a unique angle \beta such that  cos\beta =A  and sin\beta =B and 0\leq \beta < 2\pi. Then asinx+bcosx =\sqrt{a^{2}+b^{2}}(Asinx+Bcosx)

=\sqrt{a^{2}+b^{2}}(cos\beta sinx+sin\beta cosx)

=\sqrt{a^{2}+b^{2}}sin(x+\beta )
 so y=\sqrt{a^{2}+b^{2}}sin(x+\beta ).
Since -1\leq sin(x+\beta )\leq 1, this implies
=-\sqrt{a^{2}+b^{2}}\leq \sqrt{a^{2}+b^{2}}sin(x+\beta )\leq \sqrt{a^{2}+b^{2}}
\Rightarrow -\sqrt{a^{2}+b^{2}}\leq y\leq \sqrt{a^{2}+b^{2}}.

Range of asinx+bcosx+c

Let y=f(x)=asinx+bcosx+c, then y-c=asinx+bcosx.

We know that for all real  values of x

\Rightarrow -\sqrt{a^{2}+b^{2}}\leq asinx+bcosx \leq \sqrt{a^{2}+b^{2}}

\Rightarrow -\sqrt{a^{2}+b^{2}}\leq (y-c)\leq \sqrt{a^{2}+b^{2}}

\Rightarrow c-\sqrt{a^{2}+b^{2}}\leq y\leq c+\sqrt{a^{2}+b^{2}}

\Rightarrow c-\sqrt{a^{2}+b^{2}}\leq f(x)\leq c+\sqrt{a^{2}+b^{2}}

Hence the range of the function asinx+bcosx+c is \mathbf{\left [ c-\sqrt{a^{2}+b^{2}}, c+ \sqrt{a^{2}+b^{2}}\right ]}

Examples

Example1. Find the range of  cosx-sinx.

Here a=-1, b=1, c=0

Hence the range of cosx-sinx=  \left [ -\sqrt{(-1)^{2}+(1)^{2}} , \sqrt{(-1)^{2}+(1)^{2}} \right ]

=\left [ -\sqrt{2} , \sqrt{2}\right ]

Example 2.  Find the range of -3sinx-4cosx -7

Sol.  Here a= -3, b=-4 and c=-7

So range of -3sinx-4cosx-7 = \left [ -7-\sqrt{(-4)^{2}+(-3)^{2}}, -7+\sqrt{(-4)^{2}+(-3)^{2}} \right ]

=\left [ -7-5, -7+5 \right ]= \left [ -12,-2 \right ]

 

Also read :

Leave a Reply

Your email address will not be published.

IBPS Clerk Exam Date 2022 Out SSC MTS Admit Card 2022 Government Exam Calendar July 2022 CBSE Class 11 Mathematics Revised Syllabus 2022-2023 UGC NET 2022 Exam Date