Polynomials Worksheet Grade 9 with PDF

                                                           Polynomials  Worksheet 

1. Which of the following is a true statement?

(a) 5x^{3}

  is  a monomial                            (b)  x^{2}+5x-3 is a linear polynomial

(c)  x+1 is monomial                                 (d) x^{2}+4x-1  is a binomial

2. A quadratic polynomial whose product and sum of zeroe are  \frac{1}{3}  and  \sqrt{2}\, \,   respectively.

(a)     3x^{2}-x+3\sqrt{2}\, \, x                            (b)3x^{2}-3\sqrt{2 }\, \, x+1

(c)     3x^{2}+x-3\sqrt{2}\, \, x                            (d)3x^{2}+3\sqrt{2}\, \, x+1

3. If α , β are the zeros of the polynomial f(x)=ax^{2}+bx+c,  then   =\frac{1}{\alpha ^{2}}+\frac{1}{\beta ^{2}}

(a)  \frac{b^{2}+2ac}{c^{2}}                                              (b) \frac{b^{2}-2ac}{c^{2}}

(c)  \frac{b^{2}+2ac}{a^{2}}                                             (d) \frac{b^{2}-2ac}{a^{2}}

4. The number of zeroes of a cubic polynomial is

(a) at most 3                                               (b) 3

(c) at least 3                                               (d) 2

5. If  a-b , a and  a+b    are zeros of the  polynomial  x^{3}-3x^{2}+x+1 , then the value of a+b  is

(a)      -1-\sqrt{2}                                           (b) 3

(c)      -1+\sqrt{2}                                           (d)1\pm \sqrt{2}

6. The number of polynomials having zeros as -2 and 5 is

(a) 1                                                               (b)2

(c)3                                                                (d) more than 3

7. If the sum of the zeros of the quadratic polynomial for kx^{2}+2x+3k is equal to the product of its zeros then  k =?

(a)   \frac{1}{3}                                                           (b)\frac{2}{3}

(c)  -\frac{2}{3}                                                         (d)-\frac{1}{3}

8. The zeroes of the quadratic polynomial      x^{2}+99x+127  are

(a) both negative                                          (b) one positive and one negative

( c) both positive                                          (d) both equal

9. The polynomial to be added to the polynomial x^{4}+2x^{3}-2x^{2}+x-1 so that the resulting polynomial is exactly divisible by  x^{2}+2x-3 is

(a)    x^{2}+1                                                  (b)2-x

(c)   x-2                                                     (d)x+2

10. Find a quadratic polynomial whose one zero is -5 and product of zeroes is 0.

11. p(x)=g(x)q(x)+r(x). If degree of g(x) =4, degree of q(x)=3 and degree of  r(x)=2, then find the degree of p(x).

12. Find the sum of the zeroes of the given quadratic polynomial  -3x^{2}+k

13. Divide  15y^{4}-16y^{3}+9y^{2}-\frac{10}{3}\, \, y by  3y-2.

14. Verify that  x=3  is a zero of the polynomial p(x)=2x^{3}-5x^{2}-4x+3.

15. If α and β are the zeros of the polynomial f(x)=x^{2}+x-2 , find the value of  .(\frac{1}{\alpha }-\frac{1}{\beta })

 Answers.   1. (a)   2. (b)    3. (b)    4. (a)    5.(d)   6. (d)    7. (c)    8. (a)    9. (c)  10. x^{2}+5x   11.  7  12. 0  13. quotient : 5y^{3}-2y^{2}+\frac{5}{3}\, \, y and remainder=0   15.-\frac{3}{2}

Download  PDF       Polynomial(worksheet-1).pdf


Leave a Reply

Your email address will not be published.

IBPS Clerk Exam Date 2022 Out SSC MTS Admit Card 2022 Government Exam Calendar July 2022 CBSE Class 11 Mathematics Revised Syllabus 2022-2023 UGC NET 2022 Exam Date