How to find Square root of a complex number

How to find Square root of a complex number

A number of the form z=x+iy

  where x,y \in \mathbb{R} and i=\sqrt{-1} is called a complex number where x is called as real part and y is called imaginary part of complex number. To find the square root of a complex number, we will assume that \sqrt{x+iy}=a+ib. Then square  both the sides  and compare real and imaginary part to  find the value of a and b , which will give us the square root.

Formula for finding square root of a complex number:

The square root of z=x+iy is

\sqrt{x+iy}= \pm \left [ \sqrt{\frac{\left | z \right |+x}{2}}+i\sqrt{\frac{\left | z \right |-x}{2}} \right ]       for  y>0    and

= \pm \left [ \sqrt{\frac{\left | z \right |+x}{2}}-i\sqrt{\frac{\left | z \right |-x}{2}} \right ]          for       y< 0

Proof. Let square root of x+iy \, \, is \, \, a+ib. That is  \sqrt{x+iy}=a+ib  where a and b in \mathbb{R}. Now square both the sides we get

x+iy= (a+ib)^{2}=a^{2}-b^{2}+2iab

Equating real and imaginary parts we get  a^{2}-b^{2}=x.....(i)\, \,\, and\,\,\, 2ab=y......(ii)

Now (a^{2}+b^{2})^{2}=(a^{2}-b^{2})^{2}+4a^{2}b^{2}\Rightarrow a^{2}+b^{2}=\sqrt{x^{2}+y^{2}} ............(iii)

Solving (i) and (iii)  we get    2a^{2}=(\sqrt{x^{2}+y^{2}})+x=\left | z \right |+x

a^{2}=\frac{\left | z \right |+x}{2}\Rightarrow a=\pm \sqrt{\frac{\left | z \right |+x}{2}} .

Similarly b=\pm \sqrt{\frac{\left | z \right |-x}{2}}. Since 2ab=y , it is clear that both a and b have the same sign when y is positive and a and b  have different sign when y is negative.  Therefore

\sqrt{x+iy}= \pm \left [ \sqrt{\frac{\left | z \right |+x}{2}}+i\sqrt{\frac{\left | z \right |-x}{2}} \right ]       for  y>0    and

= \pm \left [ \sqrt{\frac{\left | z \right |+x}{2}}-i\sqrt{\frac{\left | z \right |-x}{2}} \right ]          for       y< 0

Example : Find the square root of (-5-12i) .

Sol.  Here \left | (-5-12i)\right |= \sqrt{(-5)^{2}+(-12)^{2}}=\sqrt{25+144}=13

Applying the formula for square root we get

\sqrt{(-5-12i)}=\pm \left [ \sqrt{\frac{\left | z \right |+x}{2}} - i \sqrt{\frac{\left | z \right |-x}{2}}\right ]     (\because b is negative)

\, \, \, \, \, \, \, \, \, \, =\pm \left ( \sqrt{\frac{13-5}{2}}-i\sqrt{\frac{13+5}{2}} \right )

=\pm (2-3i)

Trick to find the square root of a complex number: 

To find \sqrt{x+iy}  , follow the following steps:

  1. First find the number \frac{\left | y \right |}{2} .
  2.  Now factorise the given number in such a way that difference of square of these factors is equal to the real number (x).

Ex.  Find the square root of 7+4i.

Sol. Find the number \frac{\left | y \right |}{2}  which is Equal to 12. Now factor 12 in such a way that difference of square of these factors is equal to the real number  x=7.

12= 4×3   and 4^{2}-3^{2}=16-9=7. Therefore \sqrt{7+4i}=\pm (4+3i).

Ex.   Find the square root of (-6+8i).

Sol. Here \frac{\left | y \right |}{2}=\frac{8}{2}=4   and 4=\sqrt{2}\times \sqrt{8} such that (\sqrt{2})^{2}-(\sqrt{8})^{2}=2-8=-6

Thus    \sqrt{(-6+8i)}=\pm (\sqrt{2}+\sqrt{8}i)=\pm (\sqrt{2}+2\sqrt{2}i)

https://youtu.be/_-ShzTIPcZE

ALSO READ: 

 

Leave a Reply

Your email address will not be published.

IBPS Clerk Exam Date 2022 Out SSC MTS Admit Card 2022 Government Exam Calendar July 2022 CBSE Class 11 Mathematics Revised Syllabus 2022-2023 UGC NET 2022 Exam Date