How to find unit digit of a number raised to power

How to find unit digit of a number raised to power

To understand  the concept  unit digit,  try to understand the concept of cyclicity  and the approach to find the unit digit of a number when the number is of the form \left ( xyz \right )^{n}

.

Unit digit of \left ( xyz \right )^{n} = unit digit of \left ( z \right )^{n}

Now consider the following cases :

Case :1   When z= 0, 1, 6  or 5  , the unit digit of \left ( z \right )^{n}  is=0,1, 5 or 6 respectively.

Example : (i)Find unit digit of  \left ( 185 \right )^{235}

Sol. unit digit of \left ( 185 \right )^{235}   = unit digit of \left ( 5 \right )^{235}= 5 ( \because any power of 5 gives unit digit 5)

(ii) Find unit digit of \left ( 36 \right )^{79}

Sol.  Unit digit of \left ( 36 \right )^{79} = unit digit of \left ( 6 \right )^{79}

So unit  digit of \left ( 36 \right )^{79}  will be equal to 6.

Case II:  When z is equal  4 or 9.

Let us take power of 4 : 4^{1}=4, \, 4^{2}=1\mathbf{{\color{Red} 6}},\, \, 4^{3}=64, \, \, 4^{4}=25\mathbf{{\color{Red} 6}},\, \, 4^{5}=1024, ........

power of 9 : 9^{1}=9, \, \, 9^{2}=8\mathbf{{\color{Red} 1}}, \, \, 9^{3}=729, \, \, 9^{4}=656\mathbf{{\color{Red} 1}}, \, 9^{5}=59049, ........

We can easily see that cycle repeats after 2.  So the cyclicity of 4 and 9 is 2. It also follows from the above pattern that when the power of 4 is odd  , the unit digit of 4^{n}   = 4 and when the power of 4 is even then unit digit of 4^{n}   = 6.

Similarly for 9 also , when power of 9 is odd , unit  digit of 9^{n}=9 and when power of 9 is even , unit digit of 9^{n}=1

Example : Find the unit digit of  \left ( 259 \right )^{148}

Sol. Unit digit of \left ( 259 \right )^{148}  =  unit digit of 9^{148}   = 1   (\because power of 9 is even)

Case 3: When z is 2, 3, 7 or 8.

\mathbf{Power \, of \, 2: 2^{1}=2, \, 2^{2}=4,\, 2^{3}=8, \, 2^{4}= 1\mathbf{{\color{Red} 6}},\, 2^{5}=32, \, 2^{6}=64, \, 2^{7}=128, \, 2^{8}=25\mathbf{{\color{Red} 6}},.........}

\boldsymbol{Power \, of \, 3: 3^{1}=3, \, 3^{2}=9,\, 3^{3}=27, \, 3^{4}= 8\mathbf{{\color{Red} 1}},\, 3^{5}=243, \, 3^{6}=729, \, 3^{7}=2187, \, 3^{8}=656\mathbf{{\color{Red} 1}},.........}

\mathbf{Power \, of \, 7: 7^{1}=7, \, 7^{2}=49,\, 7^{3}=343, \, 7^{4}= 240\mathbf{{\color{Red} 1}},\, 7^{5}=16807, \, 7^{6}=117649, \, 7^{7}=823543, \, 7^{8}=576480\mathbf{{\color{Red} 1}},.........}

\mathbf{Power \, of \, 8: 8^{1}=8, \, 8^{2}=64,\, 8^{3}=512, \, 8^{4}=409 \mathbf{{\color{Red} 6}},\, 8^{5}=32768, \, 8^{6}=262144, \, 8^{7}=2097152, \, 8^{8}=1677721\mathbf{{\color{Red} 6}},.........}

Clearly cycle of 2,3,7 and 8 repeats after 4. So the cyclicity of 2,3,7 and 8 is 4. 

 When z = 2,3,4,7,8 and 9 , following table is useful in finding the last digit of \left ( z \right )^{n}.

value of z then divide ‘n’ If remainder is then the last digit of z^{n}
4 and 9 \rightarrow by 2 (cyclicity of 4  and 9 is 2)  1  = unit digit of  (  4^{1} \, \, or \, \, 9^{1})
0 = unit digit of   ( 4^{2} \, \, or \, \, 9^{2})
2, 3, 7 and 8  by 4  (cyclicity of 2 ,3,7 and 8 is 4) 1 =unit digit of ( 2^{1}, 3^{1}, 7^{1}\, or \, 8^{1})
2 =unit digit of ( 2^{2}, 3^{2}, 7^{2}\, or \, 8^{2})
3 =unit digit of ( 2^{3}, 3^{3}, 7^{3}\, or \, 8^{3})
0 =unit digit of ( 2^{4}, 3^{4}, 7^{4}\, or \, 8^{4})

Problems based on unit digit of a number raised to some power

Example 1. Find the unit digit of (287)^{562581}

Sol.  The unit digit 287 is 7 so divide   562581 by 4 .  On dividing 562581 by 4 we get remainder 1.

Thus the unit digit of  (287)^{562581}  = unit digit of (7)^{562581}= unit digit of \left ( 7 \right )^{1}= 7        

Example 2.  Find the unit digit of  \left ( 7493 \right )^{263}\times \left ( 151 \right )^{29}.

Sol. Unit digit of \left ( 7493 \right )^{263}= unit digit of \left ( 3 \right )^{263}

=  unit digit of \left ( 3 \right )^{3}     =7        ( \because  On dividing 263 by 4 we get remainder as 3)

Unit digit of \left ( 151 \right )^{29} = unit digit of \left ( 1 \right )^{29}=1

Therefore unit digit of   \left ( 7493 \right )^{263}\times \left ( 151 \right )^{29} = unit digit of (7 x 1) = 7.                       Ans.  7

Example 3 : Find unit digit of \mathbf{\left ( 259 \right )^{148}-\left ( 123 \right )^{43}}.

Sol . Unit digit of \left ( 259 \right )^{148}  =  unit digit of 9^{148}   = 1   (\because power of 9 is even)

Unit digit of \left ( 123 \right )^{43}= unit digit of 3^{43}= unit digit of 3^{3} =7 ( when divided by 4 gives remainder 3)

Therefore unit digit of \mathbf{\left ( 259 \right )^{148}-\left ( 123 \right )^{43}}  =   1-7 =-6  =-6+10=4  ( when unit digit comes negative  then add 10)

Ans.  4

Example  4:  Find unit digit of 2^{11!} .

Sol. Since every  n!  where n >3 , is  divisible by 4. So when 11! is divided by 4 gives  remainder 0

Therefore unit digit of 2^{11!} = unit digit of 2^{4}= unit digit of 16 =6.

ALSO READ: 

 

Leave a Reply

Your email address will not be published.

IBPS Clerk Exam Date 2022 Out SSC MTS Admit Card 2022 Government Exam Calendar July 2022 CBSE Class 11 Mathematics Revised Syllabus 2022-2023 UGC NET 2022 Exam Date